Operating Regimes of GaAs–AlGaAs Semiconductor Ring Lasers: Experiment and Model

نویسندگان

  • M. Sorel
  • P. J. R. Laybourn
چکیده

Theory and experiments of single-mode ridge waveguide GaAs–AlGaAs semiconductor ring lasers are presented. The lasers are found to operate bidirectionally up to twice the threshold, where unidirectional operation starts. Bidirectional operation reveals that just above threshold, the lasers operate in a regime where the two counterpropagating modes are continuous wave. As the injected current is increased, a new regime appears where the intensities of the two counterpropagating modes undergo alternate sinusoidal oscillations with frequency in the tens of megahertz range. The regime with alternate oscillations was previously observed in ring lasers of the gas and dye type, and it is here reported and investigated in semiconductor ring lasers. A theoretical model based on a mean field approach for the two counterpropagating modes is proposed to study the semiconductor ring laser dynamics. Numerical results are in agreement with the regime sequence experimentally observed when the injected current is increased (i.e., bidirectional continuous-wave, bidirectional with alternate oscillations, unidirectional). The boundaries of the different regimes are studied as a function of the relevant parameters, which turn out to be the pump current and the conservative and dissipative scattering coefficients, responsible for an explicit linear coupling between the two counterpropagating field modes. By a fitting procedure, we obtain good numerical agreement between experiment and theory, and also an estimation for the otherwise unknown scattering parameters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design Optimization for 4.1-THZ Quantum Cascade Lasers

We present an optimized design for GaAs/AlGaAs quantum cascade lasers operating at ‎‎4.1THz. This was based on a three-well active module with diagonal radiative transition. This ‎was performed by modifying the existing model structure, to reduce the parasitic anticrossings ‎‎(leakage currents) as well as the optical gain linewidth. While the gain FWHM was reduced by ‎more than 50% the gain pea...

متن کامل

Ultrahigh spontaneous emission quantum efficiency, 99.7% internally and 72% externally, from AIGaAs/GaAs/ AlGaAs double heterostructures

Optically thin AlGaAs/GaAs/AlGaAs double heterostructures, (5000 A), are floated off their substrates by the epitaxial liftoff technique and mounted on various high reflectivity surfaces. From the absolute photoluminescence intensity, we measure internal and external quantum efficiencies of 99.7% and 72%, respectively. High spontaneous emission quantum efficiency, is important for photon number...

متن کامل

Intervalley Scattering and the Role of Indirect Band Gap AlAs Barriers: Application to GaAs/AlGaAs Quantum Cascade Lasers

We report on the results of our simulations of Γ−X scattering in GaAs/AlGaAs heterostructures, discussing the importance of the mole fraction, doping density, and lattice and electron temperature in determining the scattering rates. We consider three systems, a single quantum well (for the investigation of Γ−X scattering), a double quantum well (to compare the Γ−X−G and Γ−Γ scattering rates), a...

متن کامل

Far Field Investigations on Quantum Cascade Lasers

Quantum cascade lasers (QCLs) are unipolar semiconductor lasers operating in the mid infrared region. Their emitted wavelength is defined by the separation of intersubband levels which can be tailored by band structure engineering. Due to the fact that the maximum conduction band offset in the GaAs/AlGaAs material system is 380 meV, the lowest directly accessible wavelength is roughly 7 μm. One...

متن کامل

High performance InAs quantum dot lasers on silicon substrates by low temperature Pd-GaAs wafer bonding

Articles you may be interested in MBE growth of P-doped 1.3 μm InAs quantum dot lasers on silicon Low-threshold high-quantum-efficiency laterally gain-coupled InGaAs/AlGaAs distributed feedback lasers Appl. 1.3 μm InGaAsP/InP lasers on GaAs substrate fabricated by the surface activated wafer bonding method at room temperature Appl.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001